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Abstract

~o

2

differences, along with a new method based on the properties of the exponen-

The traditional recurrence for the computation of exponential divided

tial function, are studied in detail in this paper. Our results show that it is
possible to combine these two methods to compute exponential divided
differences accurately. A hybrid algorithin is presented for which our error

bound grows quite slowly with the order of the divided difference.
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Introduction

We need accurate divided differences for computing certain functions of

matrices f (4) by means of the Newton interpolating polynomial (cf. section

8):

7(4) = 871 + 5 aty T (A, )
~ where A} stand for the divided differences of f on the eigenvalues of 4. One
can evaluate f (4) by computing first the divided differences and then accu-
mulating the polynomial. The divided differences must be of high relative
accuracy because they are the coeflicients of products of matrices which. in
some cases, have very large norm. What makes such accuracy possible is
that the divided differences are not for arSitrary smooth functions f but for
well known analytic functions such as exp, sin and cos. Thus we can exploit 1

their properties in the computation.

In this paper we restrict our attention to exponential divided
-differences. A new technique, namely argument reduction fo: matrix
exponentials, makes it realistic to consider data sets with imaginary parts
bounded by m# in magnitude. Based on this an algorithm is presented for

which our error bound grows quite slowly with the order of the divided

-difference. ]

We begin by collecting together a considerable amount of information on

divided differences and we hope that there will be other applications for

accurate divided differences of well known functions.

N
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1 section 1

1. Basic Notation and Theorems

1.1. Definition ol Divided Difference

- Following McCurdy [1980], we will use an uncommon but compact notation

for divided difference. For completeness and simplicity we use the contour
integral representation to define the divided differences. Our attention will

be on the basic properties {1.2.1), (1.2.2) and (1.2.3) given in section 1.2.

Let f be a holomorphic function defined inside and on a simple closed
contour C enclosing the sequence Z=[¢{,.¢a, . . . . ¢p..-] Of complex numbers.
Z denotes the abscissae (or, for those who do not like Latin, data points or
nodes, or even knots). We use A¥f to denote the k-th order divided
difference of f on ¢{i.ie1. - - - . $isx. FOr any integer i > 0, the k-th order
divided difference Aff on Z is defined (following Gel'fand) to be

_ _ 1 L ()dw
Ay =aH2)s = 211"'-'{ (= o=¢iar) - (@0=ine) (1.1.1)

The superscript of A¥f denotes the order and the subscript denotes the

starting point in Z. Reference to the abscissae Z is usually suppressed.

Remark 1. An alternative, and more elementary definition (used in Conte
and de Boor[1980], cf. p.40) designates A¥f as the coefficient of z* in the

unique polynomial of minimal degree which interpolates f at ¢i.¢iv1 - Eias-

Remark 2. Milne-Thomson [1933] writes A¥f as [¢i.éis1. - - ., Ciek ). SUPpress-
ing the function while de Boor considers [¢i.¢i41. - - - . $iax ] 23 2 linear func-
tional whose value on f is written [¢;.¢is1, - - - . &ise ]S - Davis [1973] uses

INeitiotn . .. . &iss): some others like Atkinson [1978] use

T O ok U T
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2 ) section 1

Fl&idinr. - - - &) while Kahan and Farkas [19683] and Gabza! [1968] use
Af (¢ivtivs. - - - o &iex), which suggested the compact notation used here.

Much of this introductory section is taken from the thesis of McCurdy[ 1980].

1.2. Basic Properties of Divided Differences
Let £{*) genote the k-th derivative of J . From basic complex analysis one
can deduce from {1.1.1) that

(1.2.1) A¥f does not depend on the order of ¢;,¢i41, . . ., €iax In Z,

Afﬁlf "Aik —lf
Gi—bi

().
(12.3)  if &4=¢141="""{isx. then A¥f = i—?f‘—)— in particular APf =f (¢).

(1.2.2) if ¢#¢ive, then AFf =

Most definitions for divided difference are based on (1.2.1),(1.2.2) and
(1.2.3). Thus our definition agrees with them when the function is holo-

morphic. In this paper f will be holomorphic.

1.3. Integral Representation
Theorem (Hermite-Gennochi).

tY Vag

Ay = _[_["' _[ TENE (=t it + (e =iV Jd vy - dvpdy,. (1.3.1)

Proof. See Gel'fand [1971].

Corollary

|8y 1< g maxl r (). (13.2)

where (1 is the convex hull of ¢;, . . . , {iex-

}

R ==ty
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1.4. Mean Value Representation

For real abscissae, (1.3.1) implies that there exists some 7<{] such that

A‘gfzk_le(k)(,,), (1.4.1)

One might hope to generalize this representation for complex abscissae by
requiring 7 to lie in the convex hull of the abscissae, but this will not suffice,

as is easily seen by the following example :

Ezample I. {1=1, {2=2. f ({)=exp(2mi{),

Alf =SSt = 0% 1 () (14.2)

for any finite n.

In the above example, if we require both abscissae to lie in f's funda-
mental domain {{: Re()e( :él—-. é—)} {note that 1 (¢+n)=71 (¢) for any integer
n), then the best we can have is that there is some 7 close to their convex
hull for which (1.4.1) :holds. The next example illustrates this property.

Ezample II. {;=t, {;=—t, t is a small non-zero real number,

_ g2mit_ g -2mit . sin(tZﬂ’t) 2 7(n) (1.4.3)

Allf - 2t =
for any real 7.

1.5. Matrix Representation

The traditional way of computing A¥f uses the divided difference table. Each
divided difference is computed from its two immediate r;eighbors in the
column to its left (use (1.2.3) for coincident abscissae and (1.2.2) for the

rest).
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& f(6)
Alf
$2 f{2)
Alf
Ap-if
ArS
$n S {¢n)

For our purposes it is more helpful to arrange the table as an upper triangu-

lar matrix, for example

72D A - - apiy ]
(&) - - A27%
Af= ... (1.5.1)

I (¢a)

The symbol Af =A(Z)f. without the superscript and subsecript, is used here
to represent a matrix, not a scalar. Let Z, be the special nxn bidiagonal

matrix associated with the ordered set 7

H 1
$2 1
Z, = - . ; (1.5.2)
S |
{n

]
Theorem {Opitz) The divided difference table is a matrix function
of=r(2,). (1.5.3)

Proof. See McCurdy [1980] or Opitz [1964].

Remark. Opitz [1964] first obtained the result but his paper is little known in
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2. Basic Methods for Computing Exponential Divided

Differences

2.1. Standard Recurrence

When all {’s in Z are distinct, we can use the well known recurrence scheme
(1.2.2) to compute the divided differences table Af: AFf for i>0, k>0 and

k+isn.

SR (Standard Recurrence scheme)'.

k—l k-1
k H—l f A f
N = —w=t

for each k=1,2,....,n and i=1,2,....n~k, where A’f =1 (¢,). »

(2.1.1)

SR is probably the simplest algorithm. It takes only n%/2 + O{n) arith-
metic operations to fill up the whole of Af when all data in Z are distinct.
However, when some f () are close together and given to limited p-ecision,
it may produce enormous relative error. For example, consider the exponen-
tial function on data [1,1.0001], Assume function values given to 8 decimal

digits, then

Jexp=27185538 — 2.7182818 _ 5 5200000 (4ns. 2.71841777..).

1.0001 -1

Four digits have been lost during the subtraction (which is performed
exactly!). Notice that the loss doesn't depend on the number of digits carried
by the function values. The first four digits of the function values agree,
therefore four digits will be lost no matter how many digits are given. Since

the higher order difference of exp behave like exp (because the derivative of

' Parlett's Recurrence for computing s(Z,) (Parlett[la‘?e]) is identical to the standard
fterative scheme for computing Ay. The techmque is based on the com.mutannty of Z, and
I(Z,) 3,112, )-1(2,,)2,, cl. Parlett[lQ‘?G]
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exp is exp), we would expect Aexp to lose 4n digits if the data are as close

together as in the example. Consequently when only 12 or 16 decimals are

available it is quite possible to lose them all for higher divided differences!

If the tabular values are the only data then there is no simple escape
from this loss of information. That is why divided differences have a bad
name in practice. However in a number of applications the functional form
of f is known (e.g. exp) and can be exploitad to obtain accurate values in

this situation. This is the essential point of our paper.

We shall suppress the reference to exp or Z in the exponential divided
differences when it can be done without amb guity. Thus A¥, AX(Z) and Afexp

may all mean A¥(Z)exp.

2.2. Special Formula for The First Divided Difference.

If the sine function for complez arguments is available and fully accurate
then we have a reliable formula for the first divided difference. Let
w=(¢is1+8i)/ 2 and ¥=(8iv1—¢)/ 2, then

Al= efist _ o = go. e¥ —e? = g sinh(y) _ . sin(iy)
$te1—=¢ v—~(—y) v iy

It ¥=0, we set A} = o%t.

Function FDD(x,y) (First Divided Difference).
Given complex data z,y, FDD will return the value of A}([z.y]).

é. w=(y +z)/2 (or w=z+(y—z)/2 when z and y are close together),
. ¥ ==z,

3. if ¥=0 then FDD=e?3,

4. if 10 then FDD=e" sin{iy) Ai¢) .

5. Return. «
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We will use that function freely in the rest of this paper for our algo-
rithms because FORTRAN library functions have improved greatly since 1970

in most main frame computers.

2.3. Taylor Series

Another simple way to compute A is by its Taylor series
ZZ
A = Aexp = exp(Zp)=/+Zp+ S+
Because of the special structure of Z,, there is an extremely elegant algo-
rithm for the first row of the matrix A. Explanation is given in Appendix A.

This approach does not apply when f is known only by its values on Z.

Algorithm TS (Taylor Series).

Given Z as in section 2.1, this algorithm computes [d(1),d(2).....d(n)]:=
[Af,---,AP~1] by Taylor series. In what follow, k indicates the current loop
number, and s (i) stores the (1,i)-th element of matrix (Z, )***~1/ (k +i —1)!
TS1. [Initialize.] Set d(i)=s(i)=1/(i-1)! for i=1,2,....,n.

TS2. [Leop.] For k=1,2,... until convergence do
TS2.1 s(1)«¢-s(1)/k
TS2.2 Fori=2,3.,....,n do
s?i)«[{‘--s(ihs(i—l)]/ (e+i-1),
dli)ed(i)+s (i).

TS3. Set d(1)= exp(¢{,;) and the algorithm terminates. =

Algorithm TS computes only the first row of A. If one wants the whole

divided diflerences table, one has to use the following TS(Il), which essen-

tially computes the whole A by repeating TS on the submatrices in Z,.

B L
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" Algorithm TS(II) (Taylor Series algorithm (II)).

Given Z and a maltrix array F, this algorithm computes F=A by Taylor
series. In what follow, k indicates the current loop number, and F(i,m),
i>m., stores the (i,m)-th element of matrix (Z,)*** ™/ (k +i-m)! .

TS(II) 1. [Initialize.] Set F(i,m)=F(m.i)=1/(i-m)! for lsms<i=<n.
TS(IN)2. [Loop.] For k=1,2,... until convergence do
TS(l1)2.1 For m=1,2,...n~-1do

Flm m)etn -Flm.m)/k,
fori=m+1i,...n do

F’éi.m.;h[('--F(i.m)+F(1'.—1.m)]/ (k+i—-m),
Fimi)eF(mi)+F(i.m).

TS(II)3. For m=1,2,...,n set FSm.m): exp(¢m ) and restore zero to the lower
parts of f, i.e., F(i,m)«0 for 0<m <i, and the algorithm termninates. »

Accuracy. TS method is fast and accurate only when all ¢; are close to z:ro.

Let 7=—=r?sazx](| and call it the "radius” of Z . Numerical exarnples show that
when the radius is bigger than 2 or 3, TS may not be reliable. The situa.ticnlis
like computing e 7 by its Taylor series, i.e., by 1-y+ §+ In finite preci-
sion arithmetic . when ¥ is large, then e~7 is small and the roundof! error
from the intermediate term kﬁ' (which is large) could impair the accucacy

of the series. If one wants the roundoff of the intermediate terms to have no

serious effect on e~7, say, confined to the last binary digit of 2 7, then y must

be small enough so that e™ sa-mf.x( :E!—), which implies y<in2 ® 0.7. It

seems reasonable to require ¥<0.7 if one wants TS to yield accurate answers.
Criterion. Use TS when ¥ is less than 0.7.

This criterion will be used throughout our paper, for we need TS to yield
accurate answers in the Scaling and Squaring method in section 2.4. One may

relax the constant 0.7 a little bit but we will stick on this value. Our examples

TS T Y

AP

Y

e vy ———
IR
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(ct. Table 2.3.3) show that the error grows rapidly with y and it becomes

unbearable when 7 is bigger than 2 or 3.

Remark. The number of terms ! needead in the series depends on the radius

7 and the machine precision ¢. In appendix A we show that in the presence of

roundoff it is sufficient to chose Il such that

3 %— se. (2.3.1) 4

J=t+1 47

; For example, if ¥=0.7, then for £¢=272¢%, 1=9 and for £=2"%, 1 :=16.

Operation count and storage. The operation count is 2ln for TS and In? for ]

TS(II), where L is the number of terms needed. Two working n-vectors are

required for storing d and s in TS while a whole matrix is needed in TS(Il).

Numerical example. Let u = cos(0.1) + isin(0.1). We ran on a Vax 11/7807

TS using single precision (£=2"%) on the set

Z=[—yu,—yu, .. .. ~uyu,..., 2]’ (2.3.7)

with different values of ¥ and n, where n is the number of points in Z. Here
79 is also the radius of the data because |u|=1. Our results are summarized
in the following table. Each entry in Table (2.3.3) is the maximum magnitude
of the relative errors in A(Z) as a multiple of £*°. Note the rapid growth of

the error as y increase.

t\’u is a trademark of the Digital Equipment Corp..
To be precise, if Z has n points, then the first [-’%—] are —yu and the other are yu.

*’ Thus the number 8240 corresponding to n =29 and y=5.2 means that the maximum relative
error in A(2Z) is 8240¢.
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n=5 n=11 n=17 n=23 n=29
¥=0.7 1.3 2.3 1.9 4.0 2.7
y=1.2 1.9 4.9 8.8 8.8 8.8
y=1.7 3.8 7.9 14.5 10.6 30.7
y=2.2 38.7 38.7 38.7 38.7 38.7
7=2.7 39.0 59.7 122.0 122.0 122.0

y=3.2 28.7 98.1 133.0 159.0 158.0
y=3.7 291.0 321.0 | 3210 484.0 484.0
r=4.2 704.0 | 1820.0 | 1820.0 | 1970.0 | 1970.0
y=4.7 | 2250.0 | 2250.0 | 2300.0 | 2300.0 | 2980.0
7=5.2 | 2980.0 | 5530.0 | 8240.0 | 8240.0 | 8240.0

Table (2.3.3). Max relative error coefficient
in Z (cf. 2.3.2) with different n and ¥.

2.4. Scaling and Squaring

2.4.1. SS (Scaling and Squaring) metiod

When the abscissae are not close enough for TS, we can shift and scale down

the size of Z, by, for example, setting

1
Ya= E,,—(Z,. -ql),
where k and 7 are chosen so that Y, has small diagonal elements. Since exp

has the following properties

(i) exp(A+zl)=e> -exp(4)
(ii) exp( é—A)”:exp(A).
_we can recover exp(Z,) from F=exp(Y,) by exp(Z,) = e"-[exp(¥,)]?*. The

matrix power F2* can be computed by repeated squaring of F (i.e. F « F2) k

times.

Four major steps for SS:
step 1. Determine ' and k so that Y, =(Z, —n/)/ 2* has radius <0.7%,

Twe usually use the arithmetic means of the data as the shifting.

$ The number 0.7 comes from the criterian in section 2.3. It is proved to be almost the best
for S8 in McCurdy[1960] when 7 is real.
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step 2. Compute F=exp(Y, ) by Taylor series.
step 3. (F « F®) k times.
step 4. Shift back F: F « g"-F.

The squaring in step 3 normally requires kn3/ 6 + n2/2 + n/ 3 operations (F
is triangular) and a matrix storage for F; this is quite expensive when n is
large. However, there is an alternative method which requires only
kn® + 0(1) operations: with some modification of steps 2 and 3, one can
replace every "intermediate” F by some divided differences table ( notice
that in step 2

27k, 27k

Y, = e 27k
27*¢,

and does not generate a divided differences table). Consequently with the
backfilling technique in §2.4.2, one can generate the whole matrix F from its
first row and therefore only the first row is needed in the squaring, thus
reducing the operations and storage required. This method does sacrifice
some accuracy, however. Before presenting the algorithms (in § 2.4.4), we
describe the backfilling technique and discuss a subtle modification of steps
2 and 3. In general we cannot avoid using a 2-dimensioned array to form F2

unless F’ has some special structure.

2.4.2. Back filling the divided difference table

Consider again the divided difference table Af

et er e e ¢ r emmem e e - e

—
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760 Al - - APy
I(&) - - AR%r

L 1)
Algorithm SR shows that Af can be generated from its diagonal elements.

However, it is also true that Af can be generated from its first row by the

formula (2.1.2): given ADA}L,--- AP™Y,

AP = (Ga — G-1)- AN + AR 7 (2.4.2.1)
for i=23.....n and £=0,1,2,....n—%.

The only worry in using formula (2.4.2.1) is the propagation of the error

in A¥f, which may be serious, especially when the ¢s are far apart. When

7 =exg and Z is real and in natural order ((, <¢; fori<j) . (2.4.2.1) is reliable
because all AFexp and (¢;,x — ¢¢-)) are positive, and summing positive
numbers is quite stable. Thus bad situations occur only when Z has large
variation in the i.maginary parts. In this case the backfilling step frequently
exhibits instability. The following is a typical example.

Numerical example. Let Z=[-24i,~21i,-181, . .., 18{,211,24i]. We compute

- the last column of A{Z): A} ~* for k=1,2,...,18 by backfilling and compare it

with the correct answer. The last column of the table denotes the magnitude

of the relative errors in the corresponding divided difference A}~

A

B ..

vy

e et g -
PP




DR r——

14 section 2
Correct values .

k to six digits Backfilling rel. error
1 .699024e-18 .000000e+00) .699024e-16 .000000e+00) .21le-07
2 .118971e-15 .167766e-14 .118971e-15 .167766e-14) .11e-07
3 -.375574e-13 .535368e-14 -.375574e-13 535368e-14§ .21e-07
4 -.1868358e-12 -.780734e-12 -.168358e-12 -.780734e-12 .15e-08
5 .149915e-10 -.436262e-11 .149815e-10 -.436262e-11 .52e-08
6 .976633e-10 .2642783-09; .976634e-10 264-279e-09 .20e-05
7 -.424631e-08 .192067e-08 -.424635e-08 192088e-08 .72e-05
8 -.333270e-07 -.616516e-07) -.333270e-07 -.616534e-07 .28e-04
9 .800392e-08 -.508937e-08; .800473e-06 -.508930e-06 .86e-04

10 .678838e-05 .9171680e-05 .878798e-05 .917475e-05 .28e-03

11 -.912472e-04 .781070e-0 g -.913509e-04 .7680928e-04 .87e-03

12 -.761200e-03 -.771374e-03 -.760814e-03 - 774224-3-03 27e-02

13 .538045e-02 - 611926&023 .544411e-02 -.611179e-02 .79e-02

14 .390049e-01 .296790e-01 .389112e-01 .307910e-01) .23e-01

15 é .121109 .184993 2-.135378 .184486 .65e-01

16 -.580745 ~-.323969 -.584346 -.443728 .18

Table (2.4.2.2): Backfilling yields enormous error for Z with

a large variation in the imaginary parts.

2.4.3. Modification of step 2 and step 3

We may assume the data have been shifted, say, to have rnean 0. For O<i<k,

define the bidiagona: matrix Z{") to be

24¢

zW =

Also let the diagonal matrix K be

1
2%, 1
1
27¢,
2
2t

PR P WV « e AP MR S v e A
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Our objective here is to replace every intermediate “F* in step 2 and 3 by
exp(Z{"), so that we can apply the backfilling technique and avoid the
storage for a whole matrix.

Modified step 2. Compute /g = exp(Z{*¥)) by TS.

Modified step 3. Compute Ff; = RFE, R~ fori=1,2,....k.
Lemma. F; = exp(Z{*) for O<i<k, in particular; Fp = exp(Z®) = exp(Z,).
Proof. Assume F; = exp(Z") for some 120, then

Fiu = RFER™ = Rexp(Z#-) 2R

= R-exp(22{*-)-R?
= exp(2RZ{*IR™).

From the definition, it may be verified that ZY) =2RZU*VWR™! tor j=0.
Hence, Fj,; = exp(Z{*~-Y). The lenma holds when !=0. By induction, we
bave F; = exp(Z{*") for i=0. »

Since every intermediat.e “F is of form exp(Z,S‘)). each of them is a
divided difference table (with different scaled abscissae). By the previous
section, F can be generated from its first row. Fence it is possible to do the

squaring (for the first row) without keeping the whole matrix.

24.4. Algorithm for SS

Algorithm SS.(Scaling and Squaring)

Given Z as in section 2.2, this algorithm computes [d(1), ....d(n)] :=
[AP.Al ..., AP"!] by scaling and squaring. In what follow, vector s stores the
current column of F’ and vector r stores the first row of the current F.

SS1.[n=1?] It n=1, return d(1)=e¢! and the algorithm terminates.

SS2.[Shifting.] Set n=(}¢;)/ n and replace ¢; by ¢-n.

|
'!
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SS3.[Scaling.] Determine the least integer k>0 such that Z'km‘axlfil <0.7,
then replace ¢; by 27%¢; for all 1.

SS4.[TS.] Call TS with Z equal to the current ¢;'s, result goes to d.

SS5. [Squaring.] For kk=1,2,....k do

SS5.1. Set s(1)=d(1), for i=2,3,...,n do
SS85.1.1 [Bac(k)ﬁn the i-th column of F ins.]}
z=s(1

s(1)=d(i)

For j=2,...,i-1 do

=s(j)
g(is)=z+((e —¢5-1)s(F-1)
z=y

next j
s(i)=exp(¢:).

§85.1.2 [form the (1,i)-th of RFPR]
r(i)=2"-1 2 d{i)s (5).

i=
SS5.2. [Update & and ¢;'s.]
d(i)er(i) fori=2,....n,
&ie2 fori=1.2,...,n,
d(1)=exp(¢,).

i AR ol PR RO AN

SS6.[Backfill the (la)st column of F.] Set s(1)=d(1), for i=2,3,...n do
z=s5(1
s(1)=d(3)
For j=2,....i-1 do

y=s
s(Fi=z+{&i—¢5-1)s (G -1)
z=y

next j
next <

e p—— =

SS7.[Shift back and stop.] :
&iedi+n, d(i)e-eMd(i), s(i-1)ees(i—-1) for i=2,....n,
set d(1)=exp(¢,) and s(n)=exp({,) and the algorithm ter-
minates. »

Remark.

(1) If the tunction FDD (ct. §2.2) for the first divided difference is available,
one can improve the accuracy of SS by using FDD whenever the first

divided difference is wanted.

E
!
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(2) SS6 is necessary for the Simple Hybrid Algorithm in the next section,

otherwise it is not needed.

The backfllling step may not alway be stable. When Z has a large varia-
tion in the imaginary parts it is likely that the formula (2.4.2.1) may fail to
yield reliable answers. In that case, the straightforward squaring is needed.

t . For completeness and for reference, we also lay out the aigorizhm below.

Algorithm SS(II). (Scaling and Squaring algorithm (II))
Given Z and matrix F, this algorithm computes F = A by scaling and

squaring. For the R in step 5.1, cf. section 2.4.3.
SS(ID1. [n=17]1t n=1, return F(1,1)=e*! and the algoritbm terminates.
SS(11)2. [Shitting. ] S'eaﬁ*n=(2(‘e)/ n and replace Z by Z-17.

SS(I1)3. [Scaling.] Determine the least integer k2D such that
2"‘m{ax] &} <0.7, then replace Z by 27 2.

Ss(11)4. [TS(11).] Call TS(II) with data Z, result goes to F.

SS(11)5. [Squaring.] For kk=1,2,....k do
ss;n;s. 1. {Update F)F=R-F&R™\.

SS{11)5.2. [Update ¢;'s.] Z«2 2.
58211)5.3. Update F(i,i).] F(i.i)=exp(¢;) for i=1,2,....n.

Ss(I1)6. [Shift back and stop.] Z«Z+n, Fee™F and the algorithm ter-
minates. »

Operation count and storage. The major part of this computation is the

squaring step, which is repeated k times. The operation count for each

squaring is n2+0(1) in SS5 and n%/ 6 —n2/2 + O(n) in SS(I1)5 (with n func-

tion cajl on exp). Hence the total operations need are ~kn? in SS and

®kn3/6 in SS(II), where k is the least non-negative integer such that
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2"*y* < 0.7, Therefore when ¥>0.7, k=[logz(y/0.7)+1]F & log,y+1.5. Four n-

vectors are needed for storing d,s,r and Z in SS and a matrix storage is

needed in SS(I1).

Accuracy. SS may be viewed as an extension of TS (Taylor Series). It can

accept moderately spread data without suffering as much as TS {(cf. §4.3).

The follow example illustrates the big difference between TS and S€S.

Numerical example. Let Z=[-16,-12,—8,—4,0,4,8,12,16]. We compare TS and

SS in the computation of AF(Z) for k=1,2,...,8. Results are summarized in

the following table. The values in the last two columns are the magnitude of

the relative error in the correspond divided differences ; notice the enor-

mous error in the first few A¥(Z) for TS.

correct values TS SS relative relative
to 6 digits op: 845 (< or *) op: 1018 error(SS) | error(TS)

Ai .150792e-05 - .281912e-01 .150792e-05 .12e-06 4
A!’ .101027e-04 .281155e-03 .101027e-04 .20e-06 .83
Af .451239%e-04 .242131e-03 451239%e-04 .36e-06 37
Af .151160e-03 .154378e-03 .15116Ce-03 .60e-06 21e-01
A: .405094e-03 .405302e-03 .405095e-03 .88e-06 51e-03
A" .904679e-03 .904669e-03 .904680e-03 .12e-05 11e-04
AL .173175e-02 .173175e-02 .173176e-02 .14e-05 48e-05
Aj .280059e-02 .290059e-02 .29005%e-02 .17e-05 73e-06

Table (2.4.4.1): Divided differences on Z, TS vs SS.

* Here 7=rr(2)-m‘axlq —(33¢()/n| is the "radius” of Z (after it has been shifted)
'

! Here [x] denotes the greatest integer that less than x.




3. Hybrid Methods

3.1. Example

QOur discussion so far suggests that it may be possible to compute & accu- ‘
rately by combining the two methods (SR and SS) of section 2. Let us con- ¥
sider the following task:

“Given Z=[50i, 1075+50¢, —10~5-~50i, —50i], compute AsAexp.”

In addition to SR and SS, we can compute A by the following “mixed” method.

Decompose A into a 2x2 block matrix and name the blocks I, IT and II,

AP all
AS

AZ A
Al AZ I l il

Ad Ad

IR

Since ¢, and ¢{; are close together ( also ¢; and ¢, ), SS is right for them and

we use SS to compute ] and II. Then we use SR to il up IIL.

In order to compare this mixed approach with SS and SR, we ran these
three algorithms in 24-binary digit (~7 decimal) arithmetic. The results are
sumrnarized in the following table. For simplicity we only compare A? and
A}. The symbol u in the last column stands for multiplication or division;
thus 8u, 4exp means six multiplication/divisions and four calls to exp are

needed.

 Method A2 A Op. count ‘
SR -.282260e-02 -.970843e-02) | (-.193573e-03 -.558794e-10) 6/L,4exp : 3
Ss -.262376e-02 -.970219e-02) | (-.194077e-03 -.295204e-07) | 1964, 10exp ) l
Mixed -.26237€e-02 -.970218e-02) | (-.194C43e-03 .207219e-09) | 264,1Cexp : :
| (~.2623764-02 -.9702184-02) | (- 204162d-09)

The following should be noticed: ’

(1). SR gives poor results on A? and AJ.
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(2). The answers of SS are not bad. This shows that SS can indeed accept
moderately spread data, but the price is high.

3). The mixed method gives the most accurate answer.

3.2. Simple Hybrid Method

The example in §3.1 shows that when one can group the data into clusters

(allow overlap)

Z=[¢nte .. Gk . /gl(,< ]
g \IXI[ I]l/

then one can compute A(Z) by

Fig. 3.2.1

This clustering should satisfy

(1) within each diagonal block of Z, the data are close enough together so

that SS may be used for the corresponding block in A,

(2) data belong to different blocks should be sufficiently separated so that
SR can be used to fill up the rest of A.

This mixed approach, which we call the simple hybrid method (SH),

demands a suitable ordering on the data Z. Such an ordering brings

together all close abscissae and we may call it a nested ordering (to be

B s
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defined precisely in §3.3). Under a nested ordering, the radius' of each
[¢i.&isr. - . . . &isr] is close to the distance between the end points. In other
words, if ¢; and {;,, are close together, then all ¢;.¢;4y, . .., &ivx are close
together. In that case, we can group the abscissae as follow : the data
¢iobie - -« 2 iee Will be in the same cluster if | &iex —¢i ] less than some value
g. This g depends on k (the number of points in the data set) only and we will
discuss the value of g =g, for each k in §4.4. For the time being, assume g, is

given, we are ready to describe the simple hybrid method.

Method SH.
[1]). Determine the clustering.

[2). Compute the clustered block (shaded area of Figure 3.2.1) by SS. Notics
that we only need SS to return the first row and the last column of eaca

block.

[3]. Fill up the rest to the first row by SR.

In practice, [1], 12] and [3] are alwayi combined for each cluster. Here

is an implementation.

Algorithm SH (Simple Hybrid Algorithm).

Given Z and the decision function G, this algorithm computes
[a(1)....d(n)]:=[AP.A}, ... AP"!] by the simple hybrid method. In what fol-
low, vertor s will store the last column of the current cluster, vector d will
store the first row of the current cluster, u will be the currently computed
row number (of A) and v, j will be the first and last index of the next cluster.

SH1.[n=17?] It yes, set d(1)=exp({,) and the algorithm terminates.

SH2.[Initialize.] Set y=rin"m{1',: |¢i=¢n| < gn-i | and compute the u-th row of A
n
by calling SS, result goes in &(u).....2(n). Set j=n

¥ Tha radius of Z is defined to be 7(2)= max [¢,—n| where nzcz‘:q Vn.
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SHA.[u=17] If yes, the algorithm terminates.

.sD.L

SH4.[Loop.)
SH4. 1.%F"{nd_the next cluster.] Find cluster [v,5], v<j.
gg)'. ]uzfn-irlxzi: l¢i~¢5] < g5 withi<y]
c). if usv then go back to (a) else SH4.2.
SH4.2.[Update d from v to j]

SH4.2.1.[call SS on Q(,. . ,Sj].]
Results go to d(v).....d(5) and s(1),....s(j —v+1)
s is the last column of the cluster.

SH4.2.2.[Fill up d(j +1),....d(n) by SR.]

For k=p—v, u—v-1, ... ,1do
d(j)=s(k)
fori=j+1,35+2,...,n do
d(i)=[a(i)~d(i-1)]/[¢i—¢usr 1]
next i
next k

SH5.[Update u.] Set u=v and j=j —1. Go back to SH3. s

Operation count and storage. The total number of operations depends on
the clustering. The worst case might take O(n®) but it would be very rare,
e.g., if 2=[1,2,3,...,2n]) aad gj=n for any j, ther. there will be exactly n clus-

ters and each cluster has n data points, which means n-0{n?) = 0(n3)

operations are needed (cf. the figure below).

Such a situation is very unlikely to happen for a realistic set of g, k=1.2.....
For our decision constants (will be discussed later), the operation count is

usually O(n?). Storage requirements will be the same as SS.
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3.3. Ordering problem

When Z is not nested, one may not be able to group the data to have proper-
ties (1) and (2) in §3.2. In that case, a much more sophisticated combination
of SS and SR, a recursive hybrid method , may be needed. Let us consider a
different example Z=[-50, 50, 50, —50]. Since the first and the last elements
are equal, we cannot use SR for A} and hence the whole of Z should be
treated as one block. But then SS is not that suitable because the radius of
Z is large. However, instead cf the whole Z we consider the subset [-50, 50,
50] (which can be grouped into two clusters) and obtain the first three
divided differences AJ,A},A%. As for Lthe last one, we make use of the fact that
it does not depend on the ordering of Z, and thus compute A} by considering
the reordered data set [-50, -50, 50, 50]. Notice that both [~50,50,50] and
[-50,-50,50,50] can be clustered for SH.

The disadvantage of “he above method is that in sorne sense the first
three divided differences have been computed twice. Had we known in
advance that the reordering would be necessary we could have avoided the
repetition ; for in our applicalion the abscissae {; can be arranged in any
order to give a Z but then it is A(Z) which must be computed. It thus raises

the question:
Does there exist a nested ordering for any given Z ?

The answer is yes when Z is real (the natural increasing ordering) but not

always in general, e.g. consider data that form a circle in the complex plane.

T T YL TR T N

|
|
|
|




24 section 3
>
X P ox
X X
X ¢
X X
X X

Before we discuss the details of the recursive hybrid methods, we men-
tion the decision function G and the decision constants g,, k=1.2,..... Given
any abscissae ¥ with k points, G(W) yields a pair of points (w;,;), wi.w;€W
such that ]ey —o,-l is an approximation of the radius of J¥. As in §3.2, the deci-
sion whether we should apply SS on the whole of W becomes the test
jwi~w;| < g.. where g, depends on k. Examples for G(#¥)=(wu ) » Do €W
are

(3.3.1) |w,—w,|=diam(W).
(3.3.2) Re(w,—w,)=diam(Re(#)).
(3.3.3) lop—w,|=2x‘1€a§clo,~—wjl. AsiwiEW:Re(wi)=mjaxRe(w,-) .
o,e¥
We will discuss G in section 4 and 5. Now assume that G is given and use it to

define a nested ordering :

Definition 3.3.4. Z is nested (with respect to G) if

G Cinn. - - -l D)={Giond) for any 1si, 1<k i+k<n.»

It is easy to verify that if G is one of (3.3.1 -3), and if Z is real, then an

arrangement of {; in increasing order gives a nested ordering.

"W
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3.4. Recursive Hybrid Method

Every divided difference can be computed by AF = RA([{,. .. .. $evi]). where

the function KH is defined below.

Recursive Function RH (Z).

This function computes the highest order divided difference on the given
data Z. Let k denote the number of points in Z, then RH return AF~Y(Z)exp.

1]. If k=1 return (exp(¢{,))-
{21. Compute G(Z)=({,.¢,)-

3). It {¢u—¢ul = g, call SS and return (d(k)) else return the following
RH(Zy,) — RH(Z(.))
) o M) (341
where Z(i)=[¢1'¢2-'---ti-htl'.bl- e .fn]. .

We leave the details of the proof that R4 does return the highest divided

difference to the reader. |Notice that when Z is nested,

G([¢:, . .. ¢ivz)=(Eivk &) and the above .decision (step [3]) means that

- - AH¢i - .. ¢k ] should be computed by SS if | &, —¢,|<g,. which is exactly
what SH did. Thus

RH reduces to SH if the abscissae are nested. »

Since the operaiion count of RH could be enormous, like O(<™), one

would hope to find a nested ordering for the {;’s to determine Z and then

apply SH on it. A practical modification is to éttempt. to nest the abscissae
(according to G) before steps [2] and [3]. If it can be done, then SH can be
applied to the rearranged Z (recall that the divided difference does not
depend on the ordering of the data). Later on we'll see that the abscissae
can always be taken close to real (cf. §5.3) and consequently ordering

according to the real part give an almast nested ordering, see §5.4.

Our purpose in introducing RH is to show that, in principle, A¥(Z)exp

can be computed accurately using fixed precision arithmetic.
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4. Real Exponential Divided Differences

Exponential divided differences for real abscissae are positive and increasing
functions of their abscissae. These properties permit derivation of bounds on
the error growth in SR (Standard Recurrence) and SS (Scaling and Squaring).
For future use, we consider the more general function exp, with scaling
parameter T, that is exp.(¢)=e™®. For simplicity we write

dﬂ
ag"

(exp,)(£). In the rest of this section, we consider exclusively

exp{™)(¢)=

divided differences on real abscissae X=[¢,.£,.':".¢, ). even if some of the pro-

perties hold for general complex abscissae.

4.1. Basic theorems and properties

Translation and scaling invariance property. Let U be the constant vector

[1.1.....1]). Then for any constants 7.,

AP~YX+aU)exp,=e™ AT (X)expn (4.1.1)
and

AP Y (X)exp,=7""1AF Y 1X)exp. (4.1.2)

Proof. (4.1.1) follows easily from the matrix equation exp(4+oaJ)=e* exp(4)

(using (1.5.3)), and (4.1.2) follows from (1.3.1) directly.

Recursive integral formula For given X and any 720, i=1,2,...,n, we have

T
AP lexp, = e™ f e"e‘-AG)“ 2exp.da, (4.1.3)
0 .
where
AR = 8K X=X\ (4.1.4)

Proof. From the Hermite-Cennochi integral representation formula (1.3.1),




27 section 4

we have

1" ¥n-2
A{‘-‘expfa_of{... { expin-V[£+ (E2=E1)vy + +(En —6n - )Vn 1] Va1 d vy
1”1 Ya-2
.—.{_{... _{"’"exp['rel*'(&*&)wﬁ"‘+(€n—&-;)Tv,‘_lldvn-r"dug

by the definition of exp,. The change of variables g;=7v; for j=1.2...n-1

yields the alternative expression

"1 "a-2

Ar-“"’"{ { { explrti+(§2~€1)01+ (bn~En-1)0n-1)d0n-day.  (4.1.5)

We recognize that this is a recurrence for AP ~'exp,, namely

h g
.5{'"exp,=¢"‘fc -’“-AE ~2exp,da
°
where o=0,. By the symmetry property (1.2.1), the ordering of the abscissae
is arbitrary; we may riplace §; by any £;, 1<i<n, hence establishing the for-

mula. »

Theorem 1. For all r>0) and k20, A¥exp, is
(i) positive,
(ii) strictly increasing in each abscissa ¢,, fori=1....n.

Proof. (i) tollows from the mean value representation (1.4.1). For (ii),

4
-o—%‘—A{‘“exp,{[(r—a)c(H)“-Aﬁ,"zexp,da >0,

since the integrand is positive.

Theorem 2. Suppose f<¢{,sy for each abscissa {,.1<isn. Then for each i

there exists a ¢€(3.7] such that

n

ARy Pexp,=(¢-¢+ =L) ap-texp,. (4.1.6)

T

PO
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Proof. By (4.1.1) and (4.1.2),
AP X-¢U))exp = 7~ Ne 6.4 -1 X)exp,
L -O.Z'e _m'AG)—z(x Jexp,do

for any i=1,2,...,n and {. Diﬂerentiatiﬁg with respect to 7 yields

AP X g exp = T Ve [(f~¢- 2Ly A7 X )exp, + AR (X exp ). (4.1.7)

Every element of the vector X—gU is non-negative, and so AP ~7(X-gU))exp
is increasing in 7. Similarly, every element of X—yU is non-positive and

APY(1(X—yU))exp is decreasing in 7. Hence

Loar-ir(x-puNexp = 0= Z-ar-r(X—yU)exp
so for some £ € [8,7], the derivative is zero. The result then follows from

(4.1.7).»

Corollary 1: Lower bound on AP “lexp,. If ¢, = ¢ for eachi=1,2,...,n, taen
AlM-lexp, = 1—;{—1—-5{"2exp,. (4.1.8)

Proof. Choose i=n, y=¢, in (4.1.8), and note that {~¢, < 0.

Corollary 2 Upper bound on AP "lexp,. If ¢, < ¢ for eachi=1,2,...,n, then

AP-lexp, < -AZF ~2exp,.» (4.1.9)

n—1

4.2. Error growth in Standard Recurrence

We now examine the error growth of one step SR when X is in increasing

order. Equation (4.1.8) leads directly to a bound on the relative error growth
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in one step of SR Let z*¥ be the relative error in Af=Afexp. ie.,
JU(AB)=(1+£kF)-AF, where fL(AF) is computed by SR. For simplicity let us first
assume that the recurrence step (2.1.1) is done exactly, in which case ¢¥

may be regarded as the inherited uncertainty of Af. We have

T -sL @ h

ri(af) =

fvm "ft.
_ (relaABT -(1eckhad !
Ew. -ft ’

After some algebraic manipulation, one obtains

Ak-t]-max{|ef7'. | eE 71 )

[FL(AR)-AF| S[A“‘+ t
By (4.1.8), since £;,,=¢; for 1.s] <i +L.

&jké. Jrmaxt| el e 1)

|eX|= | r1(af)-Af|
& | S A‘b

<s[1+

Therefore, we have

Uncertainty growth! of one step of SR (with X in increasing order)

|k S (14 2o maxflebiitl. | ef ) (4.2.1)
This bound is quite realistic. Take the example in §2.1: Z=[1, 1.0001]. Both
AP=e! and AQ=g!C00! c.an be computed accurately with |ef],]|22|<¢ , so equa-
tion (4.2.1) predicts |e}|<20001s. In §2.1, with £=5-10"%, we have
e}=(2.72-2.7184...)/(2.718...) = 0.000582 ~ 11641s.

In finite arithmetic, the execution of SR may introduce some roundoff
error to AXY. An error analysis in appendix B shows that-only a small
modification of (4.2.1) is needed to incorporate the effects of roundoff into

the propagation of uncertainty.

7 This is the growth of the uncertainties in the data. As long as there are uncertainties in the
input, SR will propagate them even if the arithmetic of each step is done exactly.

e =
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Error growth of one step of SR. Provided that £¢¥! and &47! are smallf,

we have

lek] < 4z + [1+E,—z’°_71-muuez=:u.zsz=-=| {n (4.2.2)

itk T

Proof. See appendix B. =

4.3. Error bounds on SS

Based on the positivity of A¥ (Theorem 1 in 4.1), we can apply standard error
analysis to obtain relative error bounds on SS. For example, in the squaring
step, each entry of the matrix is positive and therefore no cancellation

occurs and we have
{r1(B? — B?| sne-(B?),

where |E| denotes the matrix all of whose elements are the absolute values
of the elements of £ and our notation A<B means that a; jSb; for every i
and J.

A detailed error analysis of Algorithm SS(II) is presented in appendix B.
As a direct corollary of equation (B.8), we have the following bound :
Scaling and squaring error bounds. Given real abscissae X in increasing
order, denote the relative error of AJ(X) by &/ as in the previous scction, and

recall y=max| g;—nl where 7 is the arithmetic mean of ¢;. For convenience
.

set o =max(y,0.7). We have

Jef| = (Cok+Ciklny +Cay' —R)¢ , (4.3.1)

t See app’endix B for details. In general, it sufices to require them less than
t4 -
Kyou=$s

b

e e ———————
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where C;=13.68 and C,=1.4427. C, depends on ¢; in particular C,=134.4

when £=27%%, and (,=215.426 when £=279,

Proaf. See appendix B. =

Remark. The bound on &¥ is quite pessimistic. Numerical results show that
most of the tirne the constants (; should be reduced to 0.0! times their

values given above (cf. the remark in appendix B)).

4.4. Decision criteria for the hybrid methods.

Using the bounds in the previous section we demonstrate that one can deter-
mine G and g; so that the recursive function RH (for the highest divided
difference) always yields a result with bounded error. For convenience, we
write X{(*)sX to indicate that X has n abscissae. The function RH(X™) s :
(1). RE(XD)=exp(¢,)-
(2). Compute G(X™™)=(£,.¢,). where §u=max¢, and ¢,=min;.

(3). It | £,-¢,| s ga—, call SS(11) and RH(X(M) := (d(1.,n)) else

RH(X{N) = RH(XH™V)

RH(X)) := =y

where X{™V s[¢ 182, biorbivr, - - - L&)

(4.4.1)

Based on the bounds {4.3.1) and (4.2.2), we are going to show by induction
that

there exist some constants g; and £(9), where Jj=1.2,... such that for any

n and X\ the relative error e~ in RH(X™) is always bounded by £~

Proof.
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Step 0. When n=1, A}X)=RH(X)=exp(¢,). Therefore £ can be set |
equal to ¢ (we assurmne function exp can be evaluated accurately, i.e. {&e?|=<¢). |
Step 1. When n=2, assume £, < §;, then G(X)=(¢2.£,). Let 8=¢,—¢,. To

compute RHA(X), SR yields (cf. 4.2.2)

|z} s4e+(1+4/8 ) £ <(5+4/ 9)= (4.4.2)
and SS yields (cf. 4.3.1)

e}l <[2Cs+2C,logy +Coy —2] €. (4.4.3) o2
Since ¥'=max(y,0.7) < max($,0.7) (4.4.3) becomes ,t
e} <[2Co+2C,log{max(8,0.7))+Ca(max(1,0.7))—2] ¢. (4.4.4) “

Notice that the bound in (4.4.2) is monotonic decreasing in 8 and the one in
(4.4.4) is monotonic non-decreasing so they have only one intersection. Let it
occur at ¥=g,. It means that ¢} will always be bounded by &) = (5+4/g,)¢ if
one computes RH(X) by SS when G(X) < g, and by SR (i.e., by (4.4.1)) other-
wise.

Step 2. Assume that for 1 < n the assertion is true, i.e., £}~! in RH(X(™)
is bounded by some constant ¢~ for any X=X{"), Consider X=X+, Lt ¢
denote |¢£,~£,], where G(X™**1)=(¢,.£,). To compute RH(X), SR, or equation
(4.4.1) yields

|eP|<ds+(1+2n/ 8 ) e(r-D . (4.4.5)
| and SS yields

e} <[nCy+nCilog{max(8,0.7)) + Cx{max(8,0.7)) —-2] ¢. (4.4.8)

Again the bound in (4.4.5) is monotonic decreasing on ¥ and (4.4.6) is mono- | L
tonic non-decreasing on 4, so they have only one intersection and let it
occurs at Y=g,  Therefore ¢! will always be bounded by

e = 4e+(1+2n/ g, 1) £V if one computes RH(X) by SS when | ¢,—¢,| <ga

- - e - ——— - -
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and by (4.4.1) otherwise.

By induction, our assertion is true for alln. »

One can generate those g;, gU) recursively by equating the bounds in
(4.4.5) and (4.4.6) and solve it for =1,2,... with the initial value ¢®=; :
4s+(1+25 /9 )-eU™ = [§Co+5 Cilog(max(v,0.7)) +Ca(max(19,0.7))-2]-¢ (4.4.7a)
with

£0) = [jCo+jC1log(max($,0.7)) + Cz(max(8,0.7))—2] ¢. (4.4.7b)

For £=2"%, We compute some of the g; and ) according to (4.4.7) and list

themn in Table (4.4.8). Therefore we have shown
Relative error bound in RH(X®). When =224, we have
lep~t] s e,

where £]'~! is the relative error of A} ™! and the value of g; and £U) are given

in Table (4.4.8). =

B - s
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Error bound digits loit

i . . 3

b 0 | (1ogio(E5)

1 0.02 0.105e+03 2.02

2 | 2100 | 0.310e+03 2.49

3 | 4846 | 0.697e+03 2.84

4 | 9227 | 0.13le+04 3.12

5 15.41 | 0.216e+04 3.33

6 23.48 | 0.326e+04 3.51

7 | 33.50 | 0.463e+04 3.67

8 | 45.48 | 0.626e+04 3.80

9 | 59.46 | 0.816e+04 3.91

10 | 75.42 | 0.103e+05 4.01

20 | 345.4 | 0.469e+05 4.67
40 | 1487. | 0.201e+08 5.30
60 | 3430. | 0.462e+06 5.67
80 | 6173. | 0.832e+08 5.92
100 | 9716. | 0.131e+07 6.12

Table (4.4.8). Single precision decision criteria (¢=27%%)

and error bounds for the hybrid algorithm.

Remark 1. The asymtoptic value of g; is i%2 + 0(i), which can be seen form

the equation £¢®) = C,g, ¢ and C,g,.,=(1+ ng

)-C,g, obtained by omitting

k+1

the lower order terms in (4.4.7). One can verify by induction that

k2-3k < g, <k? and consequently the error bound £®) = (&, k2 + O(k))e.

Remark 2. Although the error bounds in Table (4.4.8) are not ridiculous,
they are quite pessimistic. Also the value of g, in the above table is too large
to be useful. For example, when n=20, gz0=345.4 and it means that A7 is
computed by (AJ® — A19)/ (¢5,—¢,) only if £3,—¢, > 345.4 ! Experience shows
that as long as {,,,—§, > 25 or 28, SR always ylelds satisfactory answers.

Since SR is much faster that SS, one prefers SR to SS whenever SR yields

satisfactory results. So we would like a set of values for g; and £0) which is

..,_,,<
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more realistic. After numerous numerical experiments we obtained the fol-

lowing experimental formula for g; and ¢Y) (for -~y precision ¢).

Experimental formula.

g5 = (1+ L)
(4.4.9)
e(j) = 5g;-.

The practica! value for g; is much smaller that the one in Table (4.4.8) (it is
like j +0.151lnj V.S. j2). For comparison, take ; =40, (4.4.9) yields £4.76 while
(4.4.8) yields 1487! We ran our SH (with g; in (4.4.9)) on a Z that has 20 data
points distributed‘ irregularity from -27 to 25. The results are summarized in

Table {4.4.10). The last column "digit lost” is logo(relative error).

Correct AT+"! n—-1 digits
7 dn to 7 digits SH 4] lost
1| -27.0 | 0.1879529e-11 | 0.1875529e-11 | 0.
2 | -26.0 | 0.3229560e-11 | 0.3229560e-11 | O.
3| -15.0 | 0.2317134e-08 | 0.2317134e-08 | 0.09
4 | -14.0 | 0.3012897¢-08 | 0.3012897e-08 | O.
5| -12.0 | 0.2983682¢-08 | 0.2983682e-08 | O.
6 | -10.0 | 0.2246401e-08 | 0.2246401e-08 | O.
7| 8.0 | 0.1353474¢-08 | 0.1353474e-08 | 0.50
8| -7.9 | 0.4257157¢-09 | 0.4257158¢-02 | 0.56
9| -7.8 | 0.9465834e-10 | 0.9465838e-10 | 0.61
10| -2.7 | 0.4272183e-10 | 0.4272186e-10 | 0.96
11| 1.0 | 0.2384207e-10 | 0 2364209e-10 | 1.10
12| 1.1 0.6378568e-11 | 0.6378574e-11 | 1.22
13| 1.2 | 0.1208801le-11 | 0.1208802e-11 | 1.33
14 | 1.3 | 0.1806541e-12 | 0.1806544e-12 | 1.45
15| 3.0 | 0.2706591e-13 | 0.2706596e-13 | 1.49
16 | 7.0 | 0.5415335e-14 | 0.5415346e-14 | 1.53
17| 9.0 | 0.1022545e-14 | 0.1022547e-14 | 1.58
18 | 13.0 | 0.2453144e-15 | 0.2453151e-15 | 1.65
19 | 24.0 | 0.3804000e-15 | 0.3803999e-15 | 0.72
20 | 25.0 | 0.1456325¢-15 | 0.1456325e-15 | 0.54

Table (4.4.10). Test example for Simple Hybrid Method.
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5. Complex Exponential divided Difference

5.1. Can we have high relative accuracy?

As we have seen in section 4, the real exponential divided differences can be
computed with high relative accuracy. What makes it possible is that
AF(X)=AF(X)exp is positive for real X. This property fails for complex data Z,
for A¥(Z) can take on any complex value. However, one can still say some-
thing about the error in A}‘(Z). In order to do that some extra notation is
needed Let X and Y be the real and imaginary part of Z, ie. if
Z=[¢nda, . ... ¢n). then X=[£.¢2. ... ,£,] and Y=[m.7m2, ... .7ma] so that
$e=&+ime for k=1,2,...n. Also let A¥(¥) denotes the exponential divided
differences on the abscissae #. OQur treatment of error in the complex case

is based on the following inequality.

Lemma. With the notation given above
|AK(Z)] = &¥(X) (5.1.1)

Pradf. Use the Hermite-Gennochi expression {1.3.1) for A¥(Z) and note that
fexpléi+($im—¢ v+ ] = expléi +{bis -t 0 +...] . =

Inequality (5.1.1) enables us to bound the error in the computed AF¥(Z) in
terms of A¥(X). The bounds are similar to those in section 4. We summarize
the results below, and leave the details to appendix B. Let £ be the unit
roundofl and e} be the absolute error of AX(Z), ie.. FL(AKZ))=AK(Z)+et.

Define £F, the pseudo relative error in A¥(Z), to be eF=ef /A¥(X).

(1). Error growth of SR (Standard Recurrence). Suppose that A¥Z) is
computed by SR, and also Re(¢;,.)=Re(¢;) for i<j<i+k. Then, to first order
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in g, the pseudo relative error ¢¥ satisfies :

2k

ck|l<ae+[1+
|21 [ [Eore—¢il

Jmaxflefqtl ekt (5.1.2)

Proof. See appendix B. »

(2). Error bounds of SS (Scaling and Squaring). Let the radius ¥ be
defined as in §2.4. Suppose that A(Z) is computed by SS({I). Then to first

order in ¢ we have
Error bound

|2¥| = [Cyk +C kIn(max(7.0.7}) + C, max(y.0.7)-2] ¢ (5.1.3)
where ;, i=0,1,2 take the same values as in (4.3.2).

Proof. See appendix B, Corollary (B.8). «

The above bounds for complex abscissae Z are similar to those for the
real one in section 4, except that the meaning of the errcr ¢f is different:
here ¢f is the error in A¥(Z) relative to A¥(X). The same analysis as in sec-
tion 4.4 shows that the hybrid methods yield small £¥ like O(&2%)e, i.e., yields
A¥(Z) with small absolute error compared to AF(X), provided that the deci-
sion function G satisfles:

(1) G(2)=(¢ut)) and [¢u—¢l =y

(2) Re(¢,) = Re(¢;) for any ¢;€2.
It leads to the definition (3.3.4) for G, i.e., G(Z)=(¢{,.¢,) such that

lfp“fvl=?‘1¥|h"¢j| where A EK‘GZ:Re({‘)=m,axRe((j) !
(ltz

(5.1.4)

For this G, we always have 2G(Z) > ¥(Z) (usually G(Z)>y(Z) except in some

rare situations). Therefore, with the above G, we have
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(3). Error bound of RH(X). There exist constants g; for the R4 and con-

stants £0), j=1.2,... such that for any X=X,
|ek] < gle-n),

Proof. The proof is similar to the one in §4.4. «

If one assumes G{Z)>7, then when £=2-24, the values of g; would be the same

as those in Table (4.4.4).

Remark 1. Let p=AX¥(X)/ [A¥(Z)| and call it the difficulty measure of A¥(Z).
The relative error of A¥(Z) is then equal to p-g¥f. The question (whether we
can compute Af(Z) with high relative accuracy) thus becomes whether p is
close to its lower bound 1. In the next section we will give an upper bound on
p when the imaginary parts Y are close to zero as shown in the next section.

The upper bound is =, in the general case.

Remark 2. In the implementation of the hybrid methods one can avoid using
RA in the real case because one can always order the data so as to be
nested. In the complex case there may not exist such an ordering and RH
seems unavoidable in order to secure good relative accuracy in the most
general case (e.g. 500 points on a circle of radius 500 in the complex plane).
However, in section 5.3 we will show how to salvage SH when the data are

complex.
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5.2. Computational Difficulty

Let X, ¥ and Z be as defined in 5.1.

Mean value representation for AZ). There exist real uv with

min 7; < u,Vv< max 7m;, such that
jha ek S VS BT

AX(Z) =aX(X)(cos(u) + isin(v)). (5.2.1)

Proof. From the identity exp(¢+in)=exp(¢)(cos(n)+isin(n)) and the
Hermi:e-Gennochi (1.3.1) again, we have
11 Y-t

AKZ) = { { { exPl&; ..+ (€ o~y si=)Vi ) ©33(7y .o+ (Mg o My simt Vi ] drdin

1" -t
+i .{{'" .{ exp{gj+... +(§en—Essn-t) ] sin(n, +...+(Men~Ngen-)va Jdvg - dugd vy,
Since =xp is positive on real values, equation (5.2.1) follows from the integral

mean value theorem. »

When the imaginary parts Y are close to zero, say mjaxln,—l <v< ;—
(5.2.1) gives a lower bound for |A¥(Z)|:

Lower bound of Af(Z)

[AF(Z)| = cos(v)-AF(X) > 0.» (5.2.2)

In general, there is no positive lower bound, as can be seen from the example
AM[0.2mi])T = 0.

AX¥(Z) can be computed accurately if the difficulty p (cf. remark 1 in
§5.1) is close to 1 (notice that AF(X) declines like 1/k!, cf. (1.3.2)). When

p > 1, it is difficult to obtain A¥(Z) with high relative accuracy. This

difficulty is intrinsic with our methods of computation. One way to overcome

T We conjecture that if the imeginary parts of the data are restricted in (0,2), then all di-
vided differences AF will never be zero. [t can be proved for i =1; but we do not know any proo!
when k bigger than 1.
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it is to increase the precision of the arithmetic operations and the variables.
Another possible approach is to find special formulae which build up A¥(Z)
from even tinier quantities, e.g., FDD, the first order divided difference for

exp in §2.2. Unfortunately for n >2 we do not know if any such formulae exist.

We define p=p(Z)=AP "X (X)/|APY(Z)| and call it the difficulty of Z (for
exp). The bigger the value of p the more difficult it is to compute AXZ) accu-
rately. From (5.2.2), Z is not difficult when |Imag(¢;)!<0.457, i=1, ... . n,
for then p < 6.41. Examples of difficult Z are : those abscissae close to
[0.2mi,4mi, . .. ,2kmwi] (for all divided differences on this abscissae are equal
to zero, i.e., p==). Another example is Z=[0,i, 2.04254+7.97730i]. We com-
puted A(Z) with approximately 7 decimal precision and give the correspond-
ing p in the following table. Notice that SS lost 8 digits in the last divided
difference, which has difficulty p ~ 108,

Correct values
to 3 digits SS P
Al (0.841 0.460 ) (0.841 0.460 ) 1.05
A2 | (-0.144e-06 -0.731e-07) | (-0.161e-06 -0.800e-07) | 7.14e06

Table 5.2.3. Divided difierences on Z=[0,i, 2.04254+7.97730i].

Remark 1. In the application of matrix exponential, the need for high rela-
tive accuracy in A¥(Z) decreases with |A¥(Z)|. When it is satisfactory to com-

pare the error in | A¥(Z)| with A¥(X) then the difficulty evaporates.

Remark 2. In general the difficulty of Z increases with the spread of the

imaginary parts. For example,

M([Re(¢).Re()]) _  I¢i=tel R0 _gRek)

P(AH[G@ZD):

[a}([¢1¢2])] " TRe(6i=¢T | g &)

TR T T AT

e e
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< | ¢1=¢e!
|Re($1-¢2)|
So the bigger the difference of the imaginary parts the larger is the
difficulty. As a point of interest we also compute the difficulty on cireles with
various radii and number of points. The results are sumrnarized in the follow-
ing table. Each entry is the difficulty of abscissae distributed uniformly on a

circle with radius 7.

¥:=5 | y=10 | y=15 | =20 =25
n=5 22 3.1 3.2 3.2 3.2
n=10 | 1.7 7.9 28.9 35.9 45.1
n=15]| 1.5 4.5 25.0 | 173.6 | 301L.7
n=20 1.3 3.2 12.6 77.5 | 851.8

Table 5.2.4. Difficulty of the highest divided difference on circle.

5.3. Ordering and Matrix Argument Reduction

A nested ordering may not exist for general complex data Z. However, if the
imaginary parts of the dala are bounded by a small number, then one can
order the data according to their real parts and get an almost nested order-
ing. In this section which is based on the period 2ni of exp, we indicate a way

to transform the data to values that have bounded imaginary parts.

Definition of The Reduction Function Mod(A)

Since exp has period 2mi the strip —n<Imag({)=r is representative. Let us

define the argument reduction function for exp as follow:
Mod(¢)=¢—2kmi  if (Rk-1)mi < Imag(¢) < (2k +1)mi.

We have exp(¢)=exp(Mod(¢)). Now we are going to extend the function Mod to

matrices. Let J be the Jordan normal form of A4, ie. A=P WP, and
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J=diag(J.;l, Ce ,Ji‘) where J, is the Jordan block with diagonal equal to

eigenvalue A, of A. Let k,, be the integer such that
(Rk ~1)mi < Imag(Ap,) <(2k +1)mi.

Define
(1) Mod{(J,, ) =Jm =2k, il
(2) Mod(J)=diag(Mod(J; ).....Mod(J;));
(8) Mod(A)=P~'Mod(J)P.

It is not difficult to prove that exp(A)=exp{Mod{A)) according to (1), (2)
and (3). Thus Mod generalizes argument reduction to matrices and yields a

matrix that has eigenvalues with bounded imaginary parts.

As we have mentioned in the introduction, the application behind the
computation of Afexp is matrix exponentials. If one applies the matrix argu-
ment reduction belore computing the exponential, then all the eigenvalues of
the matrix would have bounded imaginary parts, thus solving the ordering

problem in the computation of the divided differences.

Remark 1. There is another way to reduce the imaginary parts of the data:
since Aexp=exp(Z,), we may apply argument reduction directly on Z, and
compute exp(Mod(Z,)). However, the bidiagonal structure of Z, will be des-
troyed by the reduction and therefore some modifications of the algorithm

TS are needed. The work for the whole computation increases significantly.

Remark 2. For the computation of Mod{4), there is a stable method which
avoids using the Jordan decomposition of a matrix. When A is triangular the

work needed is approximately n3/ 3 operations which is quite practical. We

will give an algorithm for argument reduction in another paper.
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5.4. Conclusion: SH for data with restricted imaginary parts

Although RH gives the divided differences with guaranteed accuracy, it is

impractical to implement it unless the order of the divided differences is
| very small like 3 or 4, because the number of operations grows like 2™. Sec-
tion 5.3 shows that (assuming one has the matrix function Mod(A)) one can
consider matrices with eigenvalues close to the real line, so there is no loss
of genzrality in considering Z with imaginary parts bounded by . There are
two advantages to small imaginary parts. The first is that we can order the
abscissae according to their real parts and obtain an almost nested ordering
(according to the G defined in section 5.1). Thus one can apply SH (Simple
Hybric. method) instead of RHY (Recursive Hybrid function). The second is
that the backfilling step in SS is stable, which implies that one can replace
SS(11) by SS with only slight sacrifice on accuracy. But the trade off is
significant, since SS takes O(n?) operations and requires only a few vectors

for storage while SS(II) take O(n3) and requires a matrix storage. We con-

clude :his section by proposing the following .

Computation of A(Z). Given Z with Re(Z) in increasing order and
lImag(Z)| <m. Use algorithm SH with the following G to cormnpute A(Z).

Decision Function G for SH on Z The function G on Z=[¢,, ..., ¢a] is l
definec tn be G(Z)=({q.¢1)t. and the decision is, for i <j,

¢1.¢; belong to the same cluster if Re(¢; —¢,)<g;-i
where the values of g; 1 =1,2,... can be those in (4.4.9).»

Numerical Results. We ran the SH algorithm on Z that has the same real

parts as in (4.4.11) but with the imaginary parts = tn. The results are |

¥ For sach Z and C, one can show that 2(G(Z)+n) > 9(2).
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summarized in the following table.
Correct values digits

n ¢n to 7 digits s lost

1 | -27.0+mi | (-0.1879529d-11 -0.1643136d-18) | (-0.1879529¢-11 -0.1643136e-18) | 0.

2 | -28.0-7t | (-0.797B4844d-13 -0.5013023d-12) | (-0.7978483¢-13 -0.5013023e-12) | 0.

3 | -15.0+7i | (-0.1747305d-08 0.9981038d-09) | (-0.1747305¢-08 0.9981036e-09) ; O.
4 | -14.0-mi | (0.4155101d-09-0.47573474-08) | (0.4155102e-09 -0.4757347e-09) | 0.

5 | -12.0+mi (0.1814275d-09 0.13231474-08) (0.1814274e-09 0.1323147¢-08) | 0.43

8 -10-7i (0.75914394-09 -0.5204460d-08) | (0.7591440e-09 -0.5204460e-09) | 0.32

7 | -8.0+mi | (0.4204520d-09 0.5119519d-08) | (0.4204520e-09 0.5119519¢-08) { O.

8 -7.8-t | (0.20918844-08 -0.3885012d-10) | (0.2091884e-09 -0.3885013e-10) | 0.20

9 | -7.8+mi | (0.4721783d-10 0.2416627d-10) | (0.4721784e-10 0.2416627e-10) | 0.48
10| -27-mi | (0.2229288d-10 -0.1255209d-10) | (0.2228289-10 -0.1255200e-10) | 0.80
11 1.0+ | (0.1147709d-10 0.8703504d-11) | (0.1147709e-10 0.8703510e-11) | 0.99
12 1.1-mmi | (0.3820052d-11-0.7453152d-12) | (0.3820956e-11 -0.7453158¢-12) | 1.18
13 1.2+mi | (0.7360573d-12 0.2693091d-12) | (0.7360580e-12 0.2693094e-12) | 1.25
14 1.3-mi | (0.12040982-12-0.1441720d-13) | (0.1204099e-12 -0.1441722e-13) | 1.29
15| 3.0+mi | (0.1798853d-13 0.5672050d-14) | (0.1798856e-13 0.5672058e-14) | 1.42
18 7.0-m% | (0.3734263d-14 -0.8906243d-15) | (0.3734268e-14 -0.8906257¢-15) | 1.43
17| 0.0+m% | (0.7041432d-15 0.2104887d-15) | (0.7041446e-15 0.2104891e-15) | 1.51
18 13.0-7i | (0.1705491d-15 -0.5255464d-16) | (0.1705495e-15 -0.5255475€e-16) | 1.51
19 | 24.0+7i | (0.1783471d-15 0.2243819d-15) | (0.1783471e-15 0.2243819e-15) | 0.27
20| 25.0-mi | (0.9540051d-16-0.1855942d-16) | (0.9540053e-16 -0.1855942¢-16) | 0.80

Table (5.4.1). Test example for SH on complex data, AT ~}(Z)exp.
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6. Application to Computing Matrix Exponentials

6.1. Representation of f(A) by the Newton interpolating polynomial

Let A be nxn and let f be any scalar function with at least n continuous
derivatives at the eigenvalues ¢,, . . . , ¢, of A. Associated with f is the unique
polynomial of degree n—1 which interpolates f at the ¢;. A convenient

representation of this polynomial was given by Newton,

=1

Pres(t) = £ 60 + a7 T =05)
Here Aff denotes the k—th order divided difference of f at the abscissae
ST (Y

A fundamental result in matrix theory (see [2]) is that
£ (A)=pnor(A) . (8.1.1)
That is,
Newton interpolating polynomial of f{A).

Fla)y =81+ Aty ﬂ(A—tjf). (6.1.2)

k=1

In our applications, 4 is in triangular form. Therefore the eigenvalues
are just the diagonal elements of the matrix and the matrix products can be

formed efliciently.

6.2. Matrix exponentials

Let A be triangular. Since exp is periodic on the imaginary axis with period
2n, we can use argument reduction in matrix form (cf. section 5.4) on 4,

replace A by another triangular A such that exp(4)=exp(4') and

|Imag(a’; ;) |<m. There is no loss of generality in assuming that argument

R

oy

e e P e
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reduction has been done and therefore the imaginary parts of the eigen- 3

values of A are bounded. Now we can apply SH on the eigenvalues to obtain

the divided differences and compute exp(4) by (6.1.2).
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Appendix A

Algorithm & Error Analysis for computing the first row
of exp (Z,) by Taylor series

(1). Algorithm

For later reference, we consider here a more general matrix Z,. Let

d(1),--,d(n) be the first row of F=exp(Z,)s/+Z, + 22/ 21+---, where
1

$ ay
$2 az

° Gp-t
K

Let Py =TI and P, = ZX/k! for k=1. An obvious way to compute F is:

Og Set =/, k=1 and Pg=].

1) If F has converged, stop.

2) Evaluate P, = P,_,-Z, /k.

3) Update Fandk :k « k+1and F « F+P,, go back to (1).

Here step (2) implies at k-th loop,

Pe(1L1)=¢ Py (1.1) K

Pg(l.i)=%—[(.;'Pk_‘(l.i)+a.;_,-}7,,_1(1.12-1)] . i=2.3. RN (A.l)

where 7,(i,j) denotes the i,j-th element of matrix P,. Notice also that
e
P.(1.1)=0 when ksi-2 and Pi-,(l.i)=-(:.';_’l—).—for 2<i<n, for Z% is a band

maltrix
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N
N

with bandwidth k& +1. Hence, we have

(i) = Y P.(14) = Y F(Li)
k=0

kai-1

= 2 Peyi(1,1) , lsisn
k=0

Set s (i)=P, 4i-,(1.1), we have

d(i)=); su(i)

k=0

and from eq.(A.1),

(a) s"(i):(jT:—LF for 1si<n,

(b) sk(l)sp,,(1,1)=¢l.P_'=“lf_1'1)_
=%-‘s""(1) for k>0,

(¢) s(i)=Peyiy(L4)
=',;_‘:j[ﬁ‘Sk-t(i)'*'ai-rsk(i—l)]

Appendix A

(a-2)

(A.9)

for i=2,3,....n and k£=1,2,....

Equations (A.3) suggest the algorithm TS in section 2.2 for d(1),...,d(n),

where a;=1 for j=1,2,...,n. TS(II) is just a simple generalization. =
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(IT). Error analysis

Here we develop error bounds on the computation of d(i) via equations (A.2)
and (A.3) (with g;=1, j=1,..,n. For simplicity £,,£2, ", |&:|<e(unit roundofT)
will denote the rounding errors introduced by basic arithmetic operation
(+-.%/). eg. fl{{a+b)*c)=(1+g,)(1+e;)(a+b)*c etc.. Define the absolute

error ¢, (i) in sg (i) by

en(d) = £Usu () - 54 (2) . )
From (A.2). d(i) is compouted via the truncated series k}i‘osk (i) for some L.
Therefore for 1sisn and g4=0,
FULEN =40 =U B U0 = Bsule)
=11(so(i)) Qm,-) + $r (se(0)) [Lare-Fa

=(soi)+en()) [T(+e;) + 3 (sali)reni))y TT(1ves)~ 3 sa i),
. Jj=1 k=1 i=k k=0

That is,

A=l+1 k=0 j=max [1.k k =0 J=max {1k}

7UAEN-d@) == 3 sli)+ D@ 1 l<:+e,~>—1]+>5e,=<i)- T (+e,).
s+ +1IT. '

In order to bound [, // and [/, we need the following two lemmas. Let

7=m‘axl¢il.
Lemma 1. For 1<i<n, ls,(i)[s}cL!-sg(i).-

Lemma 2. If 12( +n -1)%<]1, then

len (i) | <3k +i =1)z- %-sg(i).-




50 Appendix A

We postpone the prools of the lemma 1 and 2. As a consequence of the lem-

mas, we have the following bounds:

Error bound on d(i). Pick ! large enough so that |/]| is less than €. For
example, ! = 1 + max ( [67].[~logze] ) would be sufficient. Here [z] is the
greatest integer < x. Assume the condition in lemma 2 holds, and also

assume 3(y+n—1)le < 1, then

|71(d(3))~d (i) | <[3(i +7) +L]ee?/ (i~1)1. (A5)

Proof. Sincek!>\f2?r'E(:—)".

i< 3§ P/k = -(-L%l)!—-e?<(§.ll)l.ev'

k=i+1
Moreover ! was chosen so that { > 6y and 27t <&, so |/]| <ee?. For U,

notice that [ IL[ (1+£)-1] < -k +1)e < (L +1)g, sO
J=max {1k}

LrE s (3 L) E+1) eso(i) < 1+ Deevsgla).
k=0 <
Finally. apply lemma 2, [/] is bounded by
1111 3 3(k +i=1)e- Lomsoli)-(14L2)
k=Q *

A3k L 4 3(i-1) 5 - L Y(14Le) sefd)
k=0 k! k=0 K!

<[3(y+i-1)+3l(y+i—1)g]e-e?s(i).

Therefore, by the assumption 3(y+n-1)le < 2,

| 7}+) 07| +| 1T < [143y+3i -3+l +1+3(y+i—1)lc]ee? s¢(1).
< [3(y+i)+l]e-e”-so(i).s
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Our bound {A.5) suggests that if d(i)sA} lexp <« e?/(i—1)! then TS will
not yield a small relative error. For later reference, we derive the foliowing

corollary. Let X=Re(Z) (cf. appendix B for notations), we have

Corollary. If Aexp is computed by TS, then to first orderin ¢

| JL(A{"Y(Z)exp)—A}~'(Z)exp
Aj-1(X)exp

| <[3(i+y)+l]ee?. (A.8)

Proof. Since X is real, (1.4.1) implies A}~ X)exp= zi_l—l)!—-e"’. Since

sg(i)= G.'——ll_)!_' equation (A.5) yields (A.8). «

Remark. The bound (A.5) is pessimistic, especially when ¥ is small. For
example, when <1, the error e, (i) in s, (i) would decrease rapidly with &
and therefore be far smaller than the rounding error :made in adding s, (i) to

d(i). In general, IT is much larger than / and //7 and we always have

UG —d@) ~ = VsG] [T (1ve)-1]

k=0 Jamax 1.k}
L.
N kL Se(i)(er +eppmt+ey).
=0
¢°l0

Since ‘€1+€2+"'+8jl grows like V7 -z, it is conceivable that the absolute
error of the divided differences will be bounded in magnitude from g/ (i —1)!
to VI -e?/ (i—1)!. We therefore have
An estimated bound of the error in d(i).
e | fl(a(i))=d(i)|-(i-1)t < VI -ee?» : (A.7)
Various numer;ical results confirm that both the upper and lower bounds in
(A.7) are reasonable. Examples can be constructed so that the errors grow

with ¥ and are about .01 to .1 of the upper bound.




52 Appendix A

Proof of lemma .

Since sq(i)=1/ (i —1)! and s (1)=¢E/k! | lemma 1 is true for k=0,i=1,2,...
and i=1,k=1,2,.... Assume that the lemma is true for s (i—1) and s;_,{i).

then according to (c) of (A.3) and s¢(i —1)=(i—1)s¢(i).

52 0 |= i b oy sot@)+ sati 1))
=g i‘SQ(‘I:).

k!
By induction oni+k, i>1, >0, lemma 1 holds for all i k. »

The bound above is best possible.

Proof of lemma 2
First, let us establish the recurrence relation among e.(i)'s according

to equations (A.3). Consider (a) of (A.3), if sc(i)=6—_1_—

3] is computed by

so{1)=1, sc(i)=sc(1',—1)/ (i—-1) for i>1, then
eo(z)=fz<so<z>>—so<~.>—ﬂ<’°“ 2.
=(1+¢,) ﬂ(sio("' _i))_

=g,50(1)+{1+¢5,)

_So(ifl)

- so(i)

90("— 1)
-1
Hence

(a). eg(1)=0, |eg(i)|se-se(i)+(1+e )—le—(oﬁ——)—- for i>1.

Next we consider equation (b) in (A.3). We have

LR L

N e
t - B

PTG,




53- Appendix A

en (D225 (1) =5 (D=1L( S5 ,(1)) = 52 (1)
=(1+e,)(1+e0) Shlses(Drena(D)] - 5:()

=[(1+e)(1re=1lsn(1) + (Lre)(1ver) ey (1)

By lemma 1, we get

(bY. |e.(1)|s[(1+z)=-1]kz"—;-so(i)+(1+s)=1§-|e,‘_,(l)| for k=1,

Finally, (c) of (A.3) implies

ex(i)= 1L (se(i))—se(i)=11( ’]'c—_‘__::i'[ti'sh--l(i)"'sk (i-1)]) — s (2)

=Sl:l%%?)—[(“‘ta)ﬁ(sb-x(i)‘*ek-1(":))"'5#(‘:-1)"'3#(’:—1)] - (2)
= g%i:%-@-[t‘sk‘l(i)"-sk(i —1) + 835':,-1(1:)] - Sg(‘i) +
(1+£,)(1+25)

+ W[U*‘%){ﬂk-x@)*’% (i-1)].

Therefore, for i>1,k=1,

(o). lextilsl(1ee)i-1 + EELLS 1 2 o),

k+i=-1

+ A2l o, (@) +lenG-1))).

Now we prove lemma 2. 1t is not difficult to show by induction that

(i). equation (a) implies [eq(i}|s[(1+£)'"!-1]so(i) and

(if). equation (b) implies |e(1)|<[(1+£)%* 1] ﬁ—-so( 1),

So lemma 2 holds for k=0,iz1 and i=lk=1. Let k=1 and i>1. Assume

lemma 2 holds for e, (i~1) and e,_,(i). From (c)’,

v T E———— " T e+ e we ==
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lex (i) 15(@s +46%) Zmsofi) ¢ AL [y e, (0)1 g (i-1)]]

sl2+ K vae +3(1+4e)(k +i-2))e Losoli)

k
+i-1

_ . R e | >
=[3(k +i-1)+12(k +i-1)= Trici ]zk! sqli).

Therefore, when 12(1 +n ~-1)%<1,

e (6)| <30k +i-1)e E—so(i).

By induction oni+k, i>1,k=>1, lemma 2 holds for all i,k. » '
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Appendix B
The error analysis of SS and SR

Recall the definition of the following the notations (cf. section 5). X and Y
denote the real and imaginary parts of Z, iLe., Z=X+iY (recall X=[--¢-].
Z=[¢¢] and Y=[-n-]). The pseudo relative error in AF(Z) is

J1(aX(Z))-AK(2Z)
AX(X)

ek (Z)= . We will suppress Z in £¥(Z) if there no risk of con-

fusion. z; denotes the roundoff error introduce by basic arithmetic opera-
tions (whether complex or real), e.g. fi(a(b+c))=(1+g,){1+e5)a(b+c) ete.

We always have |¢;|<e.

(1). SR (Standard Recurrence): error growth of one step SR.

k-1 — Ak
It A¥Z) is computed by AXSN(Z) - AF-Y(2)
¢i+h - ("

, and if Re(ft\g)kRe(CJ) for
isj<i+k, then, provided that

41+ 2k ] Jmax}efqt]. ek j+3e 42 < 1

[ $con—¢i

the pseudo relative error ¢f=¢f(Z) satisfles :

lef|s4e+[1+ T(‘T%T]'maxiltikf—lll-'tf-l“. (B.1)
Proof. We have
FLAMZ)) = 1t TUASZN-ruAr2Z) | _

fi +h "(‘i
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= (1re,)(1+eo)(1bea) [AM(Z) 4okt MK oy ioad T

! Cive—¢i Civk ¢y

3 k-1__ k-~
= (1+e)(1+e)(Lreg) [AK(Z) +eknt aR(x) St T | ypmryy B0lzelT )
Cive—¢e Live—Ci

Therefore

| 7UAK2))-aK2Z) |<[(1+£)°~1] |AKZ)! +

+ (L+e) (800 T AR ()l maxt 87 o273
lfﬂ-k—fil

k-1
Since by (4.1.8) %—(—(-X]){—)- <k and by (5.1.2) |A¥(Z)|<A¥(X), the bound follows

by a direct estimate on the above equation. =

Remark. The requirement Re(¢;,,)=Re(¢;) for i<j<i+k is necessary only

when the imaginary parts of the data are close together. It is used to show

ARG (X)-AFY(X)
(i +e—$i

< AK(X). *

When the imaginary parts are not clustered together, one can replace the
condition by a more general one. Let z=diam([¢;,....¢4]) and

z=diam([¢;, . . . . ¢isx]), then with (4.1.6) one can show that

1 z?

. <k
ive—Gl z-z

implies the inequality (*).

(1). SS (Scaling and Squaring): error bound of SS

We only do the analysis of SS(II). Recall 7=7(Z)-=.miax](‘-n] where

n=(}¢)/n. In SS(Il) the number of squaring K is chosen such that
<
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2-Xy < 0.7. Let ¢ denote the number of terms need in TS. Provided that

[(Bel+K—-1)k+2%-1.(2+e14(2.1+1))-2]% < 0.5 . we have
Error bound of SS(11) '

lef] < [(B-e'*+R)k+2K.(2+e14(2.1+1))-2] ¢ (B.2)

Proof. There are two sources of error in SS(II): the initial error in TS(II)
(Taylor Series algorithm (11)) and the error introduced by squarings. Since

2-X4<0.7, we have from equation (A.6)

|ek(2-XZ) | <[3k +(2.1+1)]e-e 14 (B.3)

(B.3) can be written as |&¥|<(C{P%+Ci¥)e, where Ci¥=3e!* and

Ci=(2.1+1)-e"*. Suppose |e¥!<(C,k+C,p)e, we now investigate how much

the error would change after cne squaring. According to method SS (cf. 2.4),
we compute A(2Z') in modified step 3 for some Z' by RA(Z')2R~!. Compare

the (i,i+k-th elements of both sides we get
AFRZ) = 2 -;:c ANZ') 8EHZY . (B.4)
Thus, if multiplication by 2% can be computed exactly, we have . . ;
| ri(AK2Z))-Ak(22")! < | 1] + | 1|, where |
I= 2"'[)'1 (842 851(2) ) - Lo (A"'(Z'))-fl(Af:i(Z'))] |

Ir= z*-[li SUAKZY) FUAEH(2?Y) -ji 8(Z')AFH(Z)

=0 =0

From |A{(2')|s8{(X") and | £1(A{(Z'))) | =1 AN(Z')+£{(Z')-83(X") | s(1+6)AJ(X7),

we have, following some standard error analysis, if

(Cik +Co)(2+ e[ Cik +CQ))e < 0.5,
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11 5 2% 5 (6= #1011 eZ )X+ efiHZ )R A7)

< (k+1.5)¢-2* -j}?fg’()(')-ﬁix’()(’)
< (k+1.5)e-AX(2X").
Similarly, when (C,k + C2)% £<0.5, we have
i) = 2% ,gltf(z-)-az(xo-.s,':z(z') + efUZYAUZYAFHX) + el Z ek HZ ) 8IXY AR |

% [Cy +Ca+ Cy (ke =j)+ Co+(Crk +Cz)z]‘='2"jtoﬂ(x')'A,":I(X')

o g e

< (Cyk +2C5+0.5)z- A (2X").

2

Thus,

e e — e py—re

| ri(a¥(227))-a8(22")]-
aA¥zx')

ed2Z) = < [(C,+1)k +2Cz+2]¢.

So, if we update CfVeC{¥+1 and CfVe2Ci¥+2 , we have
ed(2-K-1Z) < [C{Yk +C§Y Je. Tt is now obvious that we can repeat the above

argument and obtain, after K squaring, the following bound:

ed(Z) s[Cm+CEOe. (B.5)

where

Cf = cf + K and ,
Cif =2K(ciM +2) -2 |

Since the assumption before (B.2) is (C{X~Vk + C§¥-V )2 £<0.5, which obviously

implies

(CPr+Ci)R+e[Clle+CH)])e < 0.5 and b
(CPr+C)2<0.5 for any O<j<K-1. t
Thus justifying (B.5), and (B.2) follows (B.5). »
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Corollary.

| e¥|s[Cok + C 1k In(max(7.0.7)) + C2 max(7.0.7)-2] £ (B.6)

where
Co=3-e"*~log,(0.35) ~ 13.68
C,=1/1n(2) ~ 1.4427

Ca=(2+e'*(2.1+1))/ 0.35, where I' is chosen such that i(o.7)f/j! <e.
Ty

Proof. When ¥=0.7, (B.6) follows from (A.8). When ¥>0.7, we have
0.722-Xy>0.35, hence

2% < 4/0.35
K < logzy = log,(0.35)

Equation (B.6) follows from (B.2).s

Remark. Bound (B.6) is quite pessimistic. ‘We observe that the actual error is
approximately 0.01 times what (B.6) gives. The following are some numerical
examples. Conside.r Z that has n abscissae distributed uniformly on the real
axis from -y to 7. We ran our SS algorithm on a Vax with £=2"2% on this exam-
ple with various n and 9. The results are summarized in the following Labie:
the entries under (B.8) are the bounds (as a multiple of &) obtained from

equation (B.6) and those under SS is the maximum magnitude of the error in

the divided differences computed by SS (as a multiple of &).

T In perticular when ¢=2-%4, | =9 and c¢=2-3%, 1 =18 (ct. §2.3).
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n=10 n=20 n=30
SS | (B6) | SS | (BB) | SS (B.6)
=10 | 8.8 | 1500. | 18. | 1700. | 27. | 1800.
¥=20 | 10. | 2800. | 36. | 3000. | 43. | 3200.
y=30 | 23. | 4200. | 29. | 4400. | 60. { 4600.
=40 | 17. | 8500. | 63. | 5700. | 82. | 5900.
¥=50 | 64. | 6300. | 68. | 7100. | 76. | 7300.
=60 | 30. | 8200. | 31. | 8400. | S58. | 8600.

Table B.7. Error bound coefficients ££/¢ of SS.

Appendix B
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